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Abstract 

The microorganisms with the aim of improving nutrients available for plants are an important prac-
tice and necessary for agriculture. During the past couple of decades, plant growth-promoting (PGP) 
rhizobia have been begun to replace the use of chemicals in agriculture, horticulture and environ-
mental cleanup strategies. Scientific researches involve multidisciplinary approaches to understand 
adaptation of plant growth promoting rhizobacteria (PGPR), their effects on plant physiology and 
growth, induced systemic resistance, biocontrol of plant pathogens, biofertilization and their toler-
ance to ecophysiological stresses. This is due to the emerging demand for dependence diminishing of 
synthetic chemical products, to the growing necessity of sustainable agriculture within a holistic vi-
sion of development and to focus on environmental protection. PGP rhizobia are naturally occurring 
soil bacteria that aggressively colonize plant roots and benefit plants by providing growth promotion 
and biological nitrogen fixation (BNF). Inoculation of crop plants with certain strains of PGP rhizobia 
at an early stage of development improves biomass production and yields through direct and indirect 
effects on roots and shoots growth. In this review, we have discussed the phytobeneficial traits of rhi-
zobia which act as PGPR, and their ecophysiological properties, biocontrolability, mechanisms and the 
desirable properties exhibited by them. 
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1. INTRODUCTION 

The rhizosphere is a nutrient-rich habitat and harbors a huge variety of bacteria and fungi that each can 
have neutral, beneficial or harmful effects on the plant (Berendsen et al., 2012). Adesemoye and Kloepper 
(2009) indicated plant growth and yield stimulation by beneficial soil microorganisms and plant growth 
promoting rhizobacteria (PGPR) is one among the most effective and best studied soil microorganisms 
which can promote plant performance. Plants inturn help beneficial soil microbes by giving an auxiliary 
environment in the rhizosphere and microbes in return also provide several benefits to plants such as 
growth promotion and stress relief. Hence plant roots ooze different organic nutrients such as sugar,  
vitamins, organic acids, amino acids, mucilage, phytosiderophores, nucleosides, phenolic compounds and 
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other signals. This results in enrichment of microorganisms, such as bacteria, fungus, algae and protozoa, 
among which bacteria influence the plant growth in a most significant manner (Uren 2007).  

Plant growth promoting rhizobacteria (PGPR) found in the rhizosphere in association with roots (Glick, 
2012) are beneficial bacteria which can heighten the growth of plants either directly by nitrogen fixation, 
phosphate solubilization, iron chelation and phytohormone production or indirectly by suppression of 
plant pathogenic organisms, induction of resistance in host plants against plant pathogens and abiotic 
stresses (Vessey,2003). 

Rhizobium is one of the plant growths promoting rhizobacteria (PGPR) which exhibit a variety of    
characteristics responsible for influencing plant growth and performance. As a symbiotic partner in    
addition to nitrogen supply, rhizobium also improves nutritional uptake by promoting the growth of plant 
root system through production of indole acetic acid (IAA) (Etesami, et al.2009) and as a rhizospheric  
microbe solubilises phosphorus and various mineral nutrients (Khan, et al, 2006).  

Plant growth could be induced by rhizobia through some of their growth stimulating mechanisms such as 
mobilization of nutrient, enhancement in stress resistance, solubilization of phosphates, production of 
phytohormones and siderophores (Ahmad, et al.2006).  

The plant growth promoting (PGP) rhizobia olso serve as biocontrol agents. The ability of bacterial sidero-
phores and antibiotics to suppress phytopathogens could be the significant agronomic importance. Both 
mechanisms have essential functions in microbial antagonism but also the mechanisms leads to bring out 
induced resistance. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new 
inoculants, offering an attractive alternate of environmentally friendly biological control of plant disease 
and improving the cropping systems into which it can be most profitably applied (Beneduzi et al., 2012).  

Plant growth promoting (PGP) rhizobia contains a useful variation for tolerating environmental stresses 
like extremes of temperature, pH, salinity and drought; heavy metals, antibiotics and pesticide pollution. 
Seeking such tolerant PGP rhizobia is expected to offer enhanced plant growth and yield even under a 
combination of stresses. The multiplicity of beneficial effects of rhizobial inoculants emphasize the need for 
further strengthening the research and their use in modern agriculture.Therefore genetic modification may 
accelerate the commercialization of PGP rhizobia as biocontrol agents that could further contribute to sus-
tainable development of agriculture. 

In this review we emphasized on the plant Growth-Promoting (PGP) traits of rhizobial related researchs 
and benefits of PGP rhizobia as well as their environmental stress tolerance. Moreover, the potential of 
PGP rhizobia and the unique properties of plant growth induction, defense pathways and the resistance 
spectrum available against various abiotic stresses on a variety of agricultural crops was summarized. 

2. PHYTOBENEFICIAL TRAITS OF RHIZOBIA 

Rhizobia, in addition to nitrogen supply, promote growth of the plants as a symbiotic partner and soil  
microbes in a number of ways. Plant growth could be induced by rhizobia through some of their growth 
stimulating mechanisms such as mobilization of nutrient, enhancement in stress resistance, solubilization 
of phosphates, production of phytohormones and siderophores (Ahmad et al., 2008).   Generally, rhizobia 
can promote plant growth directly by either often due to their ability for nutrient supply (nitrogen,   
phosphorus, potassium and essential minerals) or modulating plant hormone levels, or indirectly by   
decreasing the inhibitory effects of various pathogens and ecophysiological Stress on plant growth and 
development in the forms of biocontrol agents, root colonizers and serve as environmental protectors 
(Kloepper and Schroth, 1981; Vessey, 2003). 

 

2.1. Nitrogen Fixation 
 

Biological Nitrogen fixation (BNF) is one of the most important biological processes on this planet and  
continued improvement in the understanding of the legume-rhizobia interaction is necessary to sustain a 
food supply to its inhabitants. Although 78% of the atmospheric air is N and it is required for synthesis of 
nucleic acids, enzymes, proteins and chlorophyll, this gaseous form is unavailable for direct assimilation by 
plants.  
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Rhizobia are bacterial symbionts of legumes that fix and convert atmospheric nitrogen in a process known 
as biological nitrogen fixation (BNF) into plant assimilable N such as ammonia through a cascade of    
reactions between prokaryotes and plants with the use of complex enzyme systems (Wilson and Burris 
1947). Inside the symbiotic root nodules, the bacteria reduce nitrogen to ammonia and supply it to the host 

(Denarie et al., 1996). This interaction starts with a signal exchange between both partners. Plant roots  
secrete specific flavonoids that interact with the bacterial NodD protein, resulting in the activation of  
rhizobial nod genes (nifH gene)  and synthesis of Nod factors (Oldroyd, 2013).The nifH gene codes for the 
dinitrogenase reductase, one of the subunits of the nitrogenase complex, responsible for reducing      
atmospheric nitrogen into ammonia (Fischer, 1994). 

The ability of PGPR to colonize roots in the presence of competing indigenous soil microflora is a major 
key to success in inoculation with beneficial bacteria.The PGP R. leguminosarum biovar trifolii R39, isolated 
from red clover nodules colonized the rhizospheres of pea, maize, and sugar beet better than the PGPR 
strain Pseudomonas fluorescens PsIA12 isolated from a wheat rhizosphere (Höflich et al., 1995). Yield     
increases caused by inoculation of nonlegumes with PGPR rhizobia have been reported in pot and field 
experiments. R. leguminosarum biovar trifolii R39 promoted the growth of maize, spring wheat, and spring 
barley in field trials performed between 1985 and 1993 in a loamy sand soil resulted in yields that were 

significantly (P<0.05) increased by 6 to 8% in Germany (Höflich et al., 1994).   

The beneficial effects resulting from the use of legumes in crop rotations or in intercropping systems have 
conventionally been attributed to their ability to form atmospheric nitrogen fixing symbioses with rhizobia 
and other rotational benefits relating to disease suppression (Graham and Vance, 2000). This symbiotic N 
contribution is reported to benefit the cereal crops, such as maize, rice, wheat and sorghum with a relative 
yield increase of 11–35.3 % (Peoples and Cranswell 1992). Moreover Mehboob et al. (2012) could have been 
shown the capacity of rhizobia in inducing the plant growth of non leguminous plants. In this regard, Azo-
rhizobium caulinodans (endophytic rhizobia) is known to enter the root system of cereals, other non-legume 
crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant 
intercellularly, including the xylem (Cocking et al., 1994).  

Legume crops substantially reduce the N requirement from external sources (Bhattacharyya and Jha 2012). 
However, N fixation efficiency of legumes varies, and depends on the host genotype, rhizobial efficiency, 
soil conditions, and climatic factors (Peoples and Cranswell 1992).   

Nitrification is an important process in nitrogen cycle in which ammonia is converted to nitrite and nitrate 
by nitrifying bacteria such as Nitrosomonas and Nitrobacter. The nitrification products, nitrite and nitrate, 
are lost by denitrification (Parker 1972). It had been demonstrated that nitrification inhibitor produced by 
B. humidicola as root extracts were seen to inhibit nitrifying bacteria, with no adverse effects on other soil 
microorganisms such as Azospirillum lipoferum, R. leguminosarum and Azotobacter chroococcum   

(Gopalakrishnan et al. 2009).    

Nitrification and denitrification remain to be the only known biological processes that generate nitrous 
oxide (N2O), a powerful greenhouse gas contribute to global warming. Therefore, biological nitrification 
inhibition is seen as the only major mitigation process towards global warming besides improving N   
recovery and N use efficiency of agricultural systems (Subbarao et al. 2012). However BNF ability, Nitrogen 
self sustainability and protein-rich grains of legumes require high energy and productivity tradeoffs   
(Hall 2004).   

Moreover, various environmental factors limit nitrogen fixation, such as soil moisture deficiency, osmotic 
stress, extremes of temperature, soil salinity, soil acidity, alkalinity, nutrient deficiency, over doses of   
fertilizers and pesticides are an important driver for BNF (Zahran 1999). 

 

2.2. Siderophore Formation 
 

Microorganisms also enhance plant growth by scavenging available iron (Fe3+), which involves secretion of 
high affinity, low molecular weight iron chelating ligands called siderophores (Anitha and Kumudini, 
2014).Under aerobic environments, iron exists as insoluble hydroxides and oxyhydroxides which are not 
accessible to both plants and microbes (Rajkumar et al. 2010). It can occur in either as divalent (ferrous or 
Fe2+) or trivalent (ferric or Fe3+) states which is determined by the pH and Eh (redox potential) of the soil 
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(Bodek et al. 1988). Bacteria have the ability to synthesis low molecular weight compounds termed as   
siderophores, capable of sequestering Fe3+ (ferric or Fe3+).These siderophores are known to have high   
affinity for Fe3+, and thus makes the iron available for plants. The siderophores are water soluble and are of 
two types viz. extracellular and intracellular. Ferric (Fe3+) ions are reduced to ferrous (Fe2+) and released 
into the cells by gram positive and negative rhizobacteria; resulting in destruction or recycling of      
siderophores (Rajkumar et al. 2010). Siderophores can form stable complex compounds with heavy metals 
such as Al, Cd, Cu etc. and with radionucleides including Uranium, Nitrogen and Phosphorus (Neubauer 
et al. 2000). Thus, the siderophore producing bacteria can relieve plants from heavy metal stress and assist 
in iron uptake. 

Like other PGPR, rhizobia produce siderophores that are strain specific (Reigh and O’Connell, 1993), and 
they can utilize a large spectrum of these molecules to overcome iron starvation (Carson et al., 2000). 
Groups of rhizobia reported to produce siderophores include R. meliloti, R. tropici, R. leguminosarum biovar 
viciae, R. leguminosarum biovar trifolii, R.leguminosarum biovar phaseoli, Sinorhizobium meliloti and        
Bradyrhizobium sp.(Arora et al. 2001). 

Plessner et al., (1993) was indicated that the future research will elucidate the importance of rhizobial   
siderophores in the biological control of pathogens and the possible competitive advantage gained by   
rhizobia through their ability to utilize siderophores of other organisms. 

 

2.3. Phosphate Solubilization 

Next to Nitrogen, phosphorus (P) is the most crucial nutrient for plant growth. It exists in both inorganic 
and organic forms and the concentration depends on the parental material (Gray and Murphy 2002).   
Although the parent material has a strong control over the soil phosphorus status of terrestrial ecosystems 
(Buol and Eswaran 2000), the availability of phosphorus to plants is influenced by pH, compaction,    
aeration, moisture, temperature, texture and organic matter of soils, crop residues, extent of plant root  
systems and root exudate secretions and available soil microbes. Soil microbes help in phosphorus release 
to the plants that absorb only the soluble phosphorus like monobasic (H2PO4

-) and dibasic (H2PO4
2-) forms 

(Bhattacharyya and Jha 2012). The soil solution remains to be the main source of phosphorus supply to 
plants. The phosphorus content of agricultural soil solutions are typically in the range of 0.01–3.0mgL-1 
representing a small portion of plant needs. The rest must be obtained from the solid phase through    
intervention of biotic and abiotic processes where the phosphate solubilizing activity of the microbes has a 

role to play (Sharma et al. 2013).  

 Some bacterial strains are found to possess both solubilization and mineralization capacity (Tao et al. 
2008). Importance of this phosphorus solubilizing capacity in enhancing plant growth by Mesorhizobium  
mediterraneum has been demonstrated in chickpea and barley plants (Peix et al. 2001). Rhizobia, including R. 
leguminosarum, R. meliloti, M. mediterraneum, Bradyrhizobium sp. and B. japonicum (Afzal and Bano 2008) are 
the potential phosphorus solubilizers. These rhizobium synthesize low molecular organic acids which acts 
on inorganic phosphorous. For instance, 2-ketogluconic acid with a phosphate-solubilizing ability has been 
identified in R. leguminosarum (Halder et al. 1990) and R. meliloti (Halder and Chakrabarty 1993). 

 

2.4. Phytohormone Production 
 

As symbiotic partner, in addition to nitrogen supply, rhizobium also produces phytohormones, mainly 
including cytokinins, Indole-3-acetic acid (IAA), auxins, abscisic acid, gibberellins, and ethylene to induce 
some important physiological responses at different stages of plant development at low concentrations (Ma 

et al. 2008). 

 

2.4.1. Cytokinins 
 

Cytokinin is known to stimulates plant cell division and in some instances root development and root hair 
formation (Frankenberger and Arshad 1995). It is documented that 90% of rhizospheric microorganisms 
are capable of releasing cytokinins and about 30 growth-promoting compounds of the cytokinin group has 
been identified from microbial origin (Nieto and Frankenberger, 1991). Rhizobium strains are also reported 
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as the potent producers of cytokinins (Senthilkumar et al. 2009).The prominent producers of Cytokinins are 
S. meliloti, S. fredii, S. medicae, and Mesorhizobium loti(Anna et al.2013).  

 

2.4.2. Indole-3-Acetic Acid (IAA) 
 

Indole-3-acetic acid is considered to be the best categorized auxin found in plants. IAA is known to    
enhance cell elongation, cell division and differentiation in plants (Singh et al. 2013). It has been estimated 
that 80% of bacteria isolated from the rhizosphere can produce IAA (Patten and Glick 1996). The prominent 
producers of IAA are Azorhizobium caulinodans, B.japonicum, B. elkanii, Mesorhizobium loti, R. japonicum, R. 
leguminosarum, R. lupine, R. meliloti, R. phaseoli, R. trifolii and Sinorhizobium spp. (Afzal and Bano 2008).  

IAA production in rhizobium takes place via indole-3-pyruvic acid and indole-3-acetic aldehyde pathway. 
On inoculation of R. leguminosarum biovar Viciae, 60-fold increase in IAA was observed in the nodules of 
vetch roots (Camerini et al. 2008). One of the highest productions of IAA had been reported with the   
inoculation with B. japonicum-SB1 and with B. thuringiensis—KR1 (Mishra et al. 2009).  Both environmental 
stress factors (acidic pH, osmotic and matrix stress and carbon limitation) and genetic factors (auxin    
biosynthesis genes and the mode of expression) were shown to influence the biosynthesis of IAA (Spaepen 
and Vanderleyden 2011). 

 

2.4.3 Gibberellins 
 

Gibberellic acid is a plant growth regulator of economic and industrial importance (Bandelier             
et al.1997).Various gibberellins are available and are associated with several plant growth and development 
processes, such as seed germination, stem elongation, sex expression of flowers and fruit development 
(Boğa et al. 2009). It is also believed that certain types of dwarfness are due to gibberellins deficiency, but it 
has no effect on roots. Application of gibberellins is known to promote securing of the plants,         
parthenocarpy in fruits, increase fruit size and number of buds and break down the tuber dormancy. Many 
PGP microbes are reported to produce gibberellins (Dobbelaere et al. 2003) including Rhizobium and    
Sinorhizobium meliloti (Boiero et al. 2007). 

 

2.4.4. Abscisic Acid 

     
Abscisic acid in plants is synthesized partially in the chloroplasts and the whole biosynthesis primarily 
takesplace in the leaves. The production of abscisic acid is affeted by stresses such as water deficit and 
freezing temperatures. It is believed that biosynthesis occurs indirectly through the production of      
carotenoids. The transport of abscisic acid can occur in both xylem and phloem tissues and can also be 
translocated through paranchyma cells. The movement of abscisic acid in plants does not exhibit polarity 
like auxins (Walton and Li 1995). 

Abscisic acid was reported to stimulate the stomatal closure, inhibit shoot growth while not affecting or 
even promoting root growth, induce seeds to store proteins and in dormancy, induce gene transcription for 
proteinase inhibitors and thereby provide pathogen defense and counteract with gibberellins (Davies 
1995). Boiero et al. (2007) reported that Rhizobium sp. and B. japonicum produced abscisic acid. 

 

2.4.5. 1-Aminocyclopropane-1-Aarboxylic Acid (ACC) Deaminase 
 

ACC deaminase is a member of a large group of enzyme that utilizes vitamin B6 and considered to be  
under tryptophan synthase family. Rhizobia have the ability to uptake ACC and convert it into 
α-ketobutyrate and NH3. Hence, on inoculation of rhizobia producing ACC deaminase, the plant ethylene 
levels are lowered and result in longer roots providing relief from stresses, such as heavy metals,    
pathogens, drought, radiation, salinity, etc.  

Rhizobial strains that express ACC deaminase are up to 40% more efficient at forming nitrogen-fixing  
nodules than strains that lack this activity (Ma et al. 2004). However, strains of rhizobia that express ACC 
deaminase have only a low level of enzyme activiity compared with free-living plant growth-promoting 
bacteria, i.e.typically around 2–10%. Thus, free-living bacteria bind relatively non-specifically to plant  
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tissues (mainly roots) and have a high level of ACC deaminase activity that can protect plants from    
different abiotic and biotic stresses by lowering ethylene levels throughout the plant. The common mode of 

acdS transcriptional regulation  genes from various strains of Mesorhizobium loti have been found to be 
under the transcriptional control of the nifA promoter that is normally responsible for activating the   
transcription of nif, nitrogen fixation genes (Nascimento et al. 2012a). Moreover, Nascimento et al. (2012a) 
suggested that in many Mesorhizobium spp. acdS genes appear to be horizontally transferred between 
strains by the exchange of the symbiosis island. This suggestion is based on observing the presence of the 
acdS gene in the symbiosis islands of M. loti R7A, M. sp. MAFF303099, Mesorhizobium  ciceri bv.biserrulae 
WSM1271, Mesorhizobium australicumWSM2073T and Mesorhizobium opportunistum WSM2075T, close to the 
nitrogen fixation gene cluster.  

Strains, such as R. leguminosarum bv.viciae, R. hedysari, R. japonicum, R. gallicum, B. japonicum, B. elkani, 
Mesorhizobium loti and S. meliloti also had been known to produce ACC deaminase (Duan et al. 
2009).Inoculation with these bacteria had shown to promote root elongation, shoot growth, enhanced  
rhizobial nodulation and minerals uptake (Glick, 2012).   

 

2.5. Synergistic Effects of Rhizobial Dual Inoculation 
 

A range of PGP microbes can be used with rhizobium that not only improves legume growth and yield but 
also cost effective and efficient. Certain specific dual inoculation causes synergy by functioning as helper 
bacteria to improve the performance of the other bacteria (Bashan and de Bashan 2005). Therefore in such 
co-inoculations, the combination of PGP bacteria, rhizobia and the host genotype has to be selected after 
extensively careful evaluations (Remans et al. 2008). 

Azospirillum, the free living diazotroph, Azotobacter, Bacillus, Psuedomonas, Serretia, and Enterobacter are 
some of the genera that are successfully used with rhizobium as co-inoculants.  Azospirillum was found to 
enhance growth and yield of several leguminous crops upon inoculation (Roseline et al. 2008). Improved 
nodulation was found when Azospirillum lipoferum and R. leguminosarum biovar trifolii were co-inoculated in 
white clovers (Tchebotar et al. 1998), pigeonpea and chickpea (Deanand et al. 2002). It was found that 
Azospirillum can increase the infection site providing a space for rhizobium resulting in higher nodule 
formation (Tchebolas et al. 1988).Moreover, co-inoculation with Azospirillum and Rhizobium were shown 
to increase phytohormones, vitamins and siderophore production (Cassan et al. 2009). Co-inoculation of 
common bean with Azospirillum- rhizobium was also shown to increase the fixed nitrogen quantity  
(Reman et al. 2008). Azotobacter was found to be a potential co-inoculant with rhizobium that enhanced the 
production of phytohormones and vitamins and increase the nodulation (Akhtar et al. 2012). 

 Enhanced nodulation and nitrogen fixation was noticed upon inoculation of Bacillus and Azospirillum 
sp.along with rhizobial inoculants in pigeonpea (Rajendran et al. 2008). Interaction between Streptomyces 
lydius WYEC108 and rhizobium of pea were shown to promote growth of the plant (Tokala et al. 2002)  
including nodule number and growth, probably by the root and nodule colonization of Streptomyces.  
Enterobacter is another most abundant PGP bacterium that increased the yield of nodules on green gram 

when co-inoculated with Bradyrhizobium sp. (Gupta et al. 1998). 

Recently, it was found that nodulation, root and shoot dry weight, grain and straw yield, nitrogen and phosphorus 
uptake were significantly increased in chickpea upon co-inoculation with Mesorhizobium sp. and Psuedomonas 
aeruginosa (Verma et al. 2013). Similar plant growth effects along with the antagonistic activities against F.   
oxysporum and R. solani has been observed on chickpea by co-inoculation of Mesorhizobium, Azotobacter 
chroococcum, P. aeruginosa and Trichoderma harzianum (Verma et al. 2014).    

 

2.6. Bio-Control Abilities of Rhizobia 
 

One of the functions associated with soil microorganisms is disease suppression and protection of plants 
from disease when pathogens are present. The ability of bacterial siderophores and antibiotics to suppress 
phytopathogens could be the significant agronomic importance. Both mechanisms have essential functions 
in microbial antagonism but also the mechanisms leads to elicit induced resistance. Resistance-inducing 
and antagonistic rhizobacteria might be useful in formulating new inoculants, offering an attractive    
alternate of environmentally friendly biological control of plant disease and improving the cropping   
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systems into which it can be most profitably applied (Beneduzi et al. 2012). 

Siderophore is one of the biocontrol mechanisms belonging to PGPR groups under iron limiting condition. 
Rhizobial strains also compete for nutrients by displacing the pathogens. Rhizobia starve the pathogens of 
available iron by producing high affinity siderophores and thereby limit the growth of the pathogen (Arora 
et al. 2001). Therefore, the low availability of iron in the environment would suppress the growth of   
pathogenic organisms including plant pathogenic fungi (Whipps, 2001).In addition to siderophore, there 
are other mechanisms of biocontrol including antibiotic compounds, elicitation of induced systemic    
resistance (ISR) of plant, and lytic enzyme secretion (Haas  and Defago, 2005). 

 Production of volatiles such as hydrogen cyanide, suppress the growth of fungal pathogens; the ability to 
successfully compete with pathogens for nutrients or specific niches on the root; and the ability to induce 
systemic resistance (ISR) (Compant et al., 2005). Several rhizobial strains are reported to have the 
bio-control properties. Hence, usage of these strains against soil borne pathogens can lead to potential  
control.   

The mechanisms of bio-control by rhizobia includes, competition for nutrients (Arora et al. 2001),     
production of antibiotics (Chandra et al. 2007), production of enzymes to degrade cell walls (Ozkoc and 
Deliveli 2001) and production of siderophores (Deshwal et al. 2003b). Hydrogen cyanide (HCN)       
synthesized by some rhizobacteria inhibits diseases in plant and thereby increasing the biocontrol   
mechanism (Schippers, 1990).The production of metabolites such as HCN, phenazines, pyrrolnitrin,   
viscoinamide and tensin by rhizobia are also reported as other mechanisms (Bhattacharyya and Jha 2012). 
For example, the strains including R. leguminosarum biovar trifolii, R. leguminosarum biovar viciae, R. meliloti, 
R. trifolii, S. meliloti and B. japonicum have been reported to secrete antibiotics and cell-wall degrading   
enzymes that can inhibit the phytopathogens (Ozkoc and Deliveli 2001). For example, a study on      
colonization behavior of P. fluorescens and S. meliloti in alfalfa rhizosphere had sufficiently demonstrated 
the usage of biocontrol agents to suppress pathogens (Villacieros et al. 2003). Pathogens that infect okra and 
sunflower, such as Macrophomina phaseolina, Rhizoctonia solani and Fusarium solani were shown to be    
controlled with the usage of B. japonicum, R. meliloti and R. leguminosarum (Ozkoc and Deliveli, 2001). Some 
more examples are cyst nematode of potato controlled by R. etli strain G12 (Reitz et al. 2000), Pythium root 
rot of sugar beet by R. leguminosarum viciae (Bardin et al. 2004) white rot disease in Brassica campestris by 
M. loti and sheath blight of rice by R. leguminosarum biovar (Mishra et al. 2006). Bradyrhizobium sp. had been 
shown to control the infection of M. phaseolina in peanut, while enhancing seed germination, nodule  
number and grain yield (Deshwal et al. 2003b). 

 

2.7. Induction of Plant Resistance 
 

The plant growth promoting strains have been confirmed to trigger the resistance of plants against   
pathogens, by process known as induced systemic resistance (ISR). In this process, a signal is generated 
involving jasmonate or ethylene pathway and thus inducing the host plant’s defense response. Various 
rhizobial species are reported to induce systemic resistance in plants by producing bio-stimulatory agents 
including R. etli, R. leguminosarum biovar phaseoli and R. leguminosarum biovar trifolii (Mishra et al. 2006). 
Even individual cellular components of the rhizobium had been shown to induce ISR viz.             
lipopolysaccharides, flagella, cyclic lipopeptides, homoserine lactones, acetoin and butanediol (Lugtenberg and  
Kamilova 2009). 

3. ADAPTATION TO ECOPHSIOLOGICAL STRESS    

3.1. Tolerance to Extremes of Temperature 
 

The growth and survival of rhizobia in soils are adversely affected by high soil temperatures (Meghvansi, 
2006).Temperature stress alters the permeability of the membrane and causes denaturation of certain   
enzymes/proteins leading to the death/poor growth of the rhizobia. High temperatures lead to increased 
drought intensity, due to enhanced transpirational water loss. This can lead to delay in nodulation or  
restrict the nodule to the subsurface region, reduction in nodule number, rhizobial growth, rate of      
colonization and infectious events (Munns et al.1979). The optimum temperature for rhizobial growth is 
28–310C, while many of them are unable to grow beyond 370C. However, rhizobia isolated from hot and 
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dry environments of the Sahel Savannah are reported to tolerate temperature up to 450C, but they were 
found to lose their infectiveness (Karanja and Wood 1988). Similarly, a heat treatment of 35 and 370C to R. 
phaseoli was found to cause loss of melanin synthesis plasmid DNA and symbiotic properties (Beltra et al. 
1988). In contrast, at 35 and 380C, R. leguminosarum biovar phaseoli was found to be effective and formed 
nodules in Proteus vulgaris, but these nodules were found to remain ineffective (Hungria and Franco 1993).  
Upon exposing the wild and heat resistant Rhizobium sp. to 30 and 430C, changes in the cell surface    
including extracellular polymeric substances/exo polysaccharides (EPS), lipopolysaccharide (LPS)     
and proteins had been demonstrated (Nandal et al. 2005). 

Intra species difference in competitive efficiency was demonstrated by Krasova-Wade et al. (2006) in which 
Bradyrhizobium ORS 3257 was found to compete their best under favorable water conditions while     
Bradyrhizobium ORS 3260 was the best under limited water conditions. 

 

3.2. Salinity Stress 
 

Salinity is known to be the higher concentration of ions (Na+, Cl-, SO4 nutrient supply via photosynthesis 
products and oxygen consumption) and BNF (by reducing the nodule metabolism, leghemoglobin content 
and atmospheric nitrogen diffusion).  One of the major problems in semi-arid regions is increased salinity 
levels of the soil. Application of salinity tolerant rhizobia in legume cropping area helps in the formation of 
effective nodules and efficient nitrogen fixation. Symbiotic effectiveness depends on the specific      
combination of compatible legume and rhizobium under the saline conditions (Faghire et al., 2013). 

Salinity decreases the nutrition uptake of plants, particularly phosphorus, due to their binding with    
Calcium ions in salt-stressed soils.  

Rhizobial species are known to vary in their salt sensitivity. Some of them are categorized as salt tolerant, 
such as R. meliloti (Zhang et al. 1991), R. fredii (Yelton et al. 1983), Rhizobium sp. from Acacia senegal, 
Prosopis chilensis (Zahran et al. 1994) and Vigna unguiculata (Mpepereki and Makoneses 1997), chickpea, 
soybean (El Sheikh and Wood 1990), and pigeonpea (Subbarao et al. 1990) whereas others as salt sensitive 
such as R. leguminosarum (Chein et al. 1992). The existence of a high degree of phenotypic and genotypic 
diversity in Sinorhizobium populations sampled from marginal soils of arid and semi-arid regions of    
Morocco have been demonstrated recently (Thami-Alami et al. 2010). 

The effect of salt stress on halotolerant rhizobia by their LPS (Lloret et al. 1995), protein profiles (Saxena et 
al. 1996) and exopolysaccharide (Lloret et al. 1998) have been studied. Large variability in the efficiency of 
host plant and rhizobial strains on BNF under salinity had been reported (Jebara et al. 2001). 

Salt tolerance mechanisms involve several gene families which have been reported largely in S. meliloti  
followed by R. etli, R. tropici, Rhizobium sp., Sinorhizobium fredi and B. japonicum.   Osmoprotectants, the 
compatible solutes/osmolytes play a dual role as evidenced in S. meliloti by proline-betaine which serves as 
both osmoprotectant (under high osmotic stress) and energy source (under low osmotic stress)       
(Miller-Williams et al. 2006).  

 

3.4. pH Tolerance 
 

Soil pH influences the growth and survival of rhizobia through alteration in the permeability of the   
membrane and uptake of nutrients. Neutral pH allows the uptake of appropriate amount of nutrients and 
results in optimum growth of rhizobia (Bhargava et al. 2016). Low survival and poor growth of rhizobia 
and inhibition of initiation and formation of root nodules are the important responses that lead to the  
failure of rhizobia–legume symbiosis in acid soils (Richardson et al. 1988). The addition of lime on acid soils 
has been followed as a common practice to raise the soil pH creating a favorable condition for the growth 
and survival of root nodule bacteria (Watkin et al. 1997). 

Graham et al. (1994) proposed some strains of Rhizobium, Azorhizobium and Bradyrhizobium to be low pH 
tolerant. Tolerance to acidity by rhizobia was correlated with the production of extracellular           
polysaccharide or polyamines glutamate concentration in the cell. Muglia et al. (2007) highlighted the role 
of glutathione, a tripeptide for the growth of R. tropici under low pH conditions. Watkin et al. (2003)    
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reported the ability of acid tolerant R. leguminosarum biovar trifolii in accumulating higher level of      
potassium and phosphorous than an acid sensitive strain. 

    

3.4. Tolerance to Heavy Metals 
 

Heavy metals are the key pollutants causing serious illness to plants, ecosystem and humans by their 
non-degradable nature. For the reclamation and removal of heavy metals, phytoremediation is suggested 
to be practiced as it preserves natural soil properties and microbial biomass (Gianfreda and Rao 2004). Ma 
et al. (2011) were also proposed the use of microorganisms such as Bacillus sp., Pseudomonas sp.,      
Azotobacter sp., Enterobacter sp., and Rhizobium sp.  to speed up the phytoremediation process. 

Rhizobia multiply slowly in soil until they infect a compatible host. Rapid growth of rhizobia occurs only 
after successful infection by a single cell and formation of a nitrogen-fixing nodule on the host-root 
(Downie, 1997). In heavy metal contaminated sites, after the successful establishment of symbiosis with the 
host plant, the heavy metals tend to accumulate in the nodules. Effects of heavy metals on growth,   
abundance, morphology and physiology of various strains of R. leguminosarum have been well     
documented (Lakzian et al. 2002).  However, despite demonstrating the extent of benefits through the use 
of PGPR in remediation of contaminated sites, there had been very few field studies while most of the   
successful studies are either from greenhouse or growth chambers (Lucy et al. 2004). Continuous exposure 
to heavy metals leads the viable bacterial cells not only to transform into a non-viable form, but also    
adversely affects the genetic diversity and nodulation of the host plants (Paton et al. 1997). Reductions in 
bacterial counts of rhizobium sp. have been reported with the increasing concentrations of heavy metals 
such as Cu, Zn and Pb, either sole or in combinations, and variations in the expression of symbiotic genes 
including nod genes (Stan et al. 2011).  A great diversity in terms of plasmid types has been observed in 
isolates of un-polluted soil than the isolates from polluted soils. In addition, the dominant plasmid groups 
present in un-polluted soils were found to be absent in isolates of polluted soils and vice versa (Castro et al. 
1997).  Changes in physiology were found to lead to the variations in protein profiles that serve as a 
marker for stress response analysis in R. leguminosarum biovar viciae isolated from heavy metal polluted 
sites (Pereira et al. 2006a). 

Similar to the non-nodulating bacterial species, rhizobia also has its own features such as EPS and LPS for 
influencing heavy metal resistance. EPS are biopolymers that possess negatively charged ligands which 
instantly form complexes with metal ions through electrostatic interactions (Sutherland 2001). Lakzian et al. 
(2002) identified that plasmids are the major contributing factor for this as highly tolerant strains were  
noticed to have 6–9 plasmids whereas moderately tolerant strains have only three plasmids. EPS from  
Rhizobium Etli (strain M4), isolated from an acid mine drainage, was shown to impact ecosystem near a 
manganese mine in Northern Australia (Pulsawat et al. 2003).  However, an alternate view was reported 
by Pereira et al. (2006b) on cadmium (Cd) resistance as they found similar number (a maximum of four) 
plasmids in all the tolerant, moderately tolerant and sensitive isolates.   

Rhizobia, such as R. fredii, R. meliloti, R. etli, R. leguminosarum biovar viceae, R. leguminosarum biovar trifolii, 
Bradyrhizobium sp. and B. japonicum had been evaluated for heavy metal resistance and of which R. fredii 
and R. meliloti alone were found to exhibit higher metal tolerance against Tellurium (Te) and Selenium (Se) 
(Kinkle et al. 1994). Nonnoi et al. (2012) demonstrated differences in the heavy metal resistance spectrum of 
S. medicae and R. leguminosarum biovar trifolii strains isolated from mercury-contaminated soils.   Paudyal 
et al. (2007) reported the negative effect of heavy metals such as Al, Fe and Mo on two Rhizobium strains 
and their symbiotic efficiency on host plants. Chaudri et al. (2000) observed greatly reduced symbiosis of R. 
leguminosarum biovar viciae with pea and R. leguminosarum biovar trifolii with white clover under Zn   
toxicity as a consequence of reduced numbers of free living rhizobia in the soil indirectly affecting N    
fixation and Zn phytotoxicity.   

 

3.5. Pesticide tolerance of Rhizobia 
 

Pesticide affects plant growth by altering plant root’s architecture, number of root sites for rhizobial    
infection, transformation of ammonia into nitrates, transformation of microbial compounds to plants and 
vice versa. Besides this growth and activity of free living or endophytic nitrogen fixing bacteria has also 
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been affected (Mathur 1999). Several studies have documented the effects of various pesticides on the  
reduction of microbial diversity and density on various soil types (Martinez-Toledo et al. 1996). Numerous 
microorganisms have the capacity to degrade the pesticides by the action of degradative genes in    
plasmids/transposons/chromosomes (Kumar et al. 1996).  In addition to Nitrogen fixation, rhizobia are 
also reported to degrade toxic pesticides to non-toxic forms (Ahemad et al.2009), synthesise antifungal 
compounds (Zaidi et al. 2009). Therefore, identifying rhizobia possessing multiple growth-promoting   
activities and exhibiting insecticide tolerance ability is useful in optimising the yields of grain legumes in 
both conventional and stressed production systems. Among insecticides, the broad-spectrum insecticides 
fipronil and pyriproxyfen are used to control insects such as locusts, ticks, whiteflies, houseflies and   
mosquitoes, both at larval and adult stages (Aajoud et al. 2003)  at low field application rates (Bobe et al. 
1997)  for various crops including legumes. The fipronil and pyriproxyfen-tolerant Rhizobium sp. strain 
MRL3 produced plant-growth-promoting substances in substantial amounts, both in the presence and in 
the absence of the insecticides.   Interestingly, when applied with any concentration of the two       
insecticides, Rhizobium sp. strain MRL3 significantly increased the measured parameters compared with 
plants grown in soils treated solely with the same concentration of each insecticide but without inoculants 

(Ahemad and Khan, 2011). 

 

3.6. Tolerance to Antibiotics 
 

Antibiosis is the most studied and widely used mechanism of biocontrol activities (Gupta et al., 2001). It 
refers to the inhibition of pathogen by the metabolic products released through the antagonist secondary 
metabolic pathways. These products include volatile compounds, toxic compounds and antibiotics, which 
are deleterious to the growth or metabolic activities of other microorganism at low concentrations (Fravel, 
1988).  

Although antibiotic resistance in bacteria is a threat in the health sector (Wright, 2007), it is a desirable trait 
in both indigenous and introduced rhizobial populations (Anand et al.2012). Resistance to antibiotics   
increases the rhizobium’s chances of survival in the rhizosphere. The antibiotic-resistant rhizobium makes 
itself competitive in soil environment to occupy high number of nodules in legumes (Belachew 2010). 
Large differences in degree of tolerance to antibiotics among fast and slow-growing rhizobia have been 
reported (Frioni et al. 2001). 

Rhizobial strains should be resistant to concentrations of antibiotics that inhibit the growth of other soil 
bacteria and they should be able to retain their infectivity and symbiotic effectiveness. While the majority 
of rhizobial strains in the soil are susceptible to antibiotics, others have developed resistance in response to 
naturally produced antibiotics (Xavier et al.1998). The resistance may be developed towards one or    
multiple antibiotic classes (Anand et al.2012). Cole and Elkan (1973) reported that R. japonicum (now   
Bradyrhizobium japonicum) carries extra chromosomal antibiotic resistance genes.  

It was demonstrated early by Balassa (1963) that acquisition of resistance to streptomycin by three rhizobial 
species (R. japonicum, R. meliloti and R. lupini) is through transformation and later acquisition of penicillin 
resistance genes by R. phaseolus and R. leguminosarum strains through transformation was also reported 
(Gadre et al.1967). Later on in R. etli, the existence of rhizobium multiresistance genes (rmrA and rmrB) 
against phytoalexin and salicylic acids were identified (Gonzalez-Pasayo and Martinez-Rpmero 2000). In 
general rhizobial strains reported to develop antibiotic resistance includes R. leguminosarum, R. trifolii, R. 

meliloti, R. Japonicum, R. phaseolus, R. lupini , and R. etli, (Naamala et al.2016)  

4. CONCLUSION 

Rhizosphere is a unique niche that provides habitation and nutrition to PGP microorganisms. In turn, these 
microorganisms produce multiple benefits of induced plant growth, defense against diseases and survival 
under stress with many other unknown benefits.  

Rhizobia in addition to the nitrogen supply, they promote growth of the plant as a symbiotic partner and 
soil microbe in a number of ways. Plant growth could be induced by rhizobia through some of their 
growth stimulating mechanisms such as mobilization of nutrient, enhancement in stress resistance,    
solubilization of phosphates, production of phytohormones and siderophores (Ahmad et al., 2008).    
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Symbiotically produced IAA alone or along with other plant hormones involved in several stages of   
establishment of symbiotic relationship and also transported to the plant for its use. Rhizobial induced  
local accumulation of auxins stimulates the formation of nodule primordial (Mortier et al.2012) and also 
necessary for growth and maintenance of root nodules. Combinations of beneficial bacterial strains that 
interact synergistically are currently being devised and numerous recent studies have shown a promising 
trend in the field of inoculation technology. PGP rhizobia are excellent model systems which can provide 
biotechnologist with novel genetic constituents and bioactive chemicals having diverse uses in agriculture 
and environmental sustainability. 

Therefore, generation of comprehensive knowledge on screening strategies and intense selection of best 
rhizobial strain for rhizosphere competence and survival should be the current need to enhance the    
inoculums usage successes. Thus, additional comprehensive research to exploit the potential of PGP   
rhizobia would provide for expansion of this research area, commercialization and improve sustainability 
in agricultural production. 
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